Preview Mode Links will not work in preview mode

Mar 17, 2022

Qualcomm is the world's largest fabless semiconductor designer. The name Qualcomm is a mashup of  Quality and Communications and communications has been a hallmark of the company since its founding. They began in satellite communications and today most every smartphone has a Qualcomm chip. The ubiquity of communications in our devices and everyday lives has allowed them a $182 billion market cap as of the time of this writing. 

Qualcomm began with far humbler beginnings. They emerged out of a company called Linkabit in 1985. Linkabit was started by Irwin Jacobs, Leonard Kleinrock, and Andrew Viterbi - all three former graduate students at MIT. 

Viterbi moved to California to take a job with JPL in Pasadena, where he worked on satellites. He then went off to UCLA where he developed what we now call the Viterti algorithm, for encoding and decoding digital communications. Jacobs worked on a book called Principles of Communication Engineering after getting his doctorate at MIT. Jacobs then took a year of leave to work at JPL after he met Viterbi in the early 1960s and the two hit it off. By 1966, Jacobs was a professor at the University of California, San Diego. Kleinrock was at UCLA by then and the three realized they had too many consulting efforts between them, but if they consolidated the request they could pool their resources. Eventually Jacobs and Viterbi left and Kleinrock got busy working on the first ARPANET node when it was installed at UCLA.

Jerry Heller, Andrew Cohen, Klein Gilhousen, and James Dunn eventually moved into the area to work at Linkabit and by the 1970s Jacobs was back to help design telecommunications for satellites. They’d been working to refine the theories from Claude Shannon’s time at MIT and Bell Labs and were some of the top names in the industry on the work. And the space race needed a lot of this type of work. They did their work on Scientific Data Systems computers in an era before that company was acquired by Xerox. Much as Claude Shannon got started thinking of data loss as it pertains to information theory while trying to send telegraphs over barbed wire, they refined that work thinking about sending images from mars to earth. 

Others from MIT worked on other space projects as a part of missions. Many of those early employees were Viterbi’s PhD students and they were joined by Joseph Odenwalder, who took Viterbi’s decoding work and combined it with a previous dissertation out of MIT when he joined Linkabit. That got used in the Voyager space probes and put Linkabit on the map. They were hiring some of the top talent in digital communications and were able to promote not only being able to work with some of the top minds in the industry but also the fact that they were in beautiful San Diego, which appealed to many in the Boston or MIT communities during harsh winters.

As solid state electronics got cheaper and the number of transistors more densely packed into those wafers, they were able to exploit the ability to make hardware and software for military applications by packing digital signal processors that had previously taken a Sigma from SDS into smaller and smaller form factors, like the Linkabit Microprocessor, which got Viterbi’s algorithm for encoding data into a breadboard and a chip. 

The work continued with defense contractors and suppliers. They built modulation and demodulation for UHF signals for military communications. That evolved into a Command Post Modem/Processor they sold, or CPM/P for short. They made modems for the military in the 1970s, some of which remained in production until the 1990s. And as they turned their way into the 1980s, they had more than $10 million in revenue. 

The UC San Diego program grew in those years, and the Linkabit founders had more and more local talent to choose from. Linkabit developed tools to facilitate encoded communications over commercial satellites as well. They partnered with companies like IBM and developed smaller business units they were able to sell off. They also developed a tool they called VideoCipher to encode video, which HBO and others used to do what we later called scrambling on satellite signals. As we rounded the corner into the 1990s, though, they turned their attention to cellular services with TDMA (Time-Division Multiple Access), an early alternative to CDMA.

Along the way, Linkabit got acquired by a company called MACOM in 1980 for $25 million. The founders liked that the acquirer was a fellow PhD from MIT and Linkabit stayed separate but grew quickly with the products they were introducing. As with most acquisitions, the culture changed and by 1985 the founders were gone. The VideoCipher and other units were sold off, spun off, or people just left and started new companies. Information theory was decades old at this point, plenty of academic papers had been published, and everyone who understood the industry knew that digital telecommunications was about to explode; a perfect storm for defections.

Over the course of the next few years over two dozen companies were born as the alumni left and by 2003, 76 companies were founded by Linkabit alumni, including four who went public. One of the companies that emerged included the Linkabit founders Irwin Jacobs and Andrew Viterbi, Begun in 1985, Qualcomm is also based in San Diego. The founders had put information theory into practice at Linkabit and seen that the managers who were great at finance just weren’t inspiring to scientists. 

Qualcomm began with consulting and research, but this time looked for products to take to market. They merged with a company called Omninet and the two released the OmniTRACS satellite communication system for trucking and logistical companies. They landed Schneider National and a few other large customers and grew to over 600 employees in those first five years. It remained a Qualcomm subsidiary until recently. Even with tens of millions in revenue, they operated at a loss while researching what they knew would be the next big thing. 

Code-Division Multiple Acces, or CDMA, is a technology that allows for sending information over multiple channels so users can share not just a single frequency of the radio band, but multiple frequencies without a lot of interference. The original research began all the way back in the 1930s when Dmitry Ageyev in the Soviet Union researched the theory of code division of signals at Leningrad Electrotechnical Institute of Communications. That work and was furthered during World War II by German researchers like Karl Küpfmüller and Americans like Claude Shannon, who focused more on the information theory of communication channels. 

People like Lee Yuk-wing then took the cybernetics work from pioneers like Norbert Weiner and helped connect those with others like Qualcomm’s Jacobs, a student of Yuk-wing’s when he was a professor at MIT. They were already working on CDMA jamming in the early 1950s at MIT’s Lincoln Lab. Another Russian named Leonid Kupriyanovich put the concept of CMDA into practice in the later 1950s so the Soviets could track people using a service they called Altai. That made it perfect for  perfect for tracking trucks and within a few years was released in 1965 as a pre-cellular radiotelephone network that got bridged to standard phone lines.

The Linkabit and then Qualcomm engineers had worked closely with satellite engineers at JPL then Hughes and other defense then commercial contractors. They’d come in contact with work and built their own intellectual property for decades. Bell was working on mobile, or cellular technologies. Ameritech Mobile Communications, or Advanced Mobile Phone System (AMPS) as they were known at the time, launched the first 1G network in 1983 and Vodaphone launched their first service in the UK in 1984. Qualcomm filed their first patent for CDMA the next year. 

That patent is one of the most cited documents in all of technology. Qualcomm worked closely with the Federal Communications Commission (FCC) in the US and with industry consortiums, such as the CTIA, or Cellular Telephone Industries Association. Meanwhile Ericsson promoted the TDMA standard as they claimed it was more standard; however, Qualcomm worked on additional patents and got to the point that they licensed their technology to early cell phone providers like Ameritech, who was one of the first to switch from the TDMA standard Ericsson promoted to CDMA. Other carriers switched to CDMA as well, which gave them data to prove their technology worked.

The OmniTRACS service helped with revenue, but they needed more. So they filed for an initial public offering in 1991 and raised over $500 billion in funding between then and 1995 when they sold another round of shares. By then, they had done the work to get CDMA encoding on a chip and it was time to go to the mass market. They made double what they raised back in just the first two years, reaching over $800 million in revenue in 1996. 

Qualcomm and Cell Phones
One of the reasons Qualcomm was able to raise so much money in two substantial rounds of public funding is that the test demonstrations were going so well. They deployed CDMA in San Diego, New York, Honk Kong, Los Angeles, and within just a few years had over a dozen carriers running substantial tests. The CTIA supported CDMA as a standard in 1993 and by 1995 they went from tests to commercial networks. 

The standard grew in adoption from there. South Korea standardized on CDMA between 1993 to 116. The CDMA standard was embraced by Primeco in 1995, who used the 1900 MHz PCS band. This was a joint venture between a number of vendors including two former regional AT&T spin-offs from before the breakup of AT&T and represented interests from Cox Communications, Sprint, and turned out to be a large undertaking. It was also the largest cellular launch with services going live in 19 cities and the first phones were from a joint venture between Qualcomm and Sony. Most of PrimeCo’s assets were later merged with AirTouch Cellular and the Bell Atlantic Mobile to form what we now know as Verizon Wireless. 

Along the way, there were a few barriers to mass proliferation of the Qualcomm CDMA standards. One is that they made phones. The Qualcomm Q cost them a lot to manufacture and it was a market with a lot of competition who had cheaper manufacturing ecosystems. So Qualcomm sold the manufacturing business to Kyocera, who continued to license Qualcomm chips. Now they could shift all of their focus on encoding bits of data to be carried over multiple radio channels to do their part in paving the way for 2G and 3G networks with the chips that went into most phones of the era. 

Qualcomm couldn’t have built out a mass manufacturing ecosystem to supply the world with every phone needed in the 2G and 3G era. Nor could they make the chips that went in those phones. The mid and late 1990s saw them outsource then just license their patents and know-how to other companies. A quarter of a billion 3G subscribers across over a hundred carriers in dozens of countries. They got in front of what came after CDMA and worked on multiple other standards, including OFDMA, or Orthogonal frequency-Division Multiple Access. For those they developed the Qualcomm Flarion Flash-OFDM and 3GPP 5G NR, or New Radio. And of course a boatload of other innovative technologies and chips. Thus paving the way to have made Qualcomm instrumental in 5G and beyond. 

This was really made possible by this hyper-specialization. Many of the same people who developed the encoding technology for the Voyager satellite decades prior helped pave the way for the mobile revolution. They ventured into manufacturing but as with many of the designers of technology and chips, chose to license the technology in massive cross-licensing deals. These deals are so big Apple sued Qualcomm recently for a billion in missed rebates. But there were changes happening in the technology industry that would shake up those licensing deals. 

Broadcom was growing into a behemoth. Many of their designs sent from stand-alone chips to being a small part of a SoC, or system on a chip. Suddenly, cross-licensing the ARM gave Qualcomm the ability to make full SoCs.  Snapdragon has been the moniker of the current line of SoCs since 2007. Qualcomm has an ARM Architectural License and uses the ARM instruction set to create their own CPUs. The most recent incarnation is known as Krait. They also create their own Graphics Processor (GPU) and Digital Signal Processors (DSPs) known as Adreno and Hexagon. They recently acquired Arteris' technology and engineering group, and they used Arteris' Network on Chip (NoC) technology.

Snapdragon chips can be found in the Samsung Galaxy, Vivo, Asus, and Xiaomi phones. Apple designs their own chips that are based on the ARM architecture, so in some ways compete with the Snapdragon, but still use Qualcomm modems like every other SoC. Qualcomm also bought a new patent portfolio from HP, including the Palm patents and others, so who knows what we’ll find in the next chips - maybe a chip in a stylus. 

Their slogan is "enabling the wireless industry," and they’ve certainly done that. From satellite communications that required a computer the size of a few refrigerators to battlefield communications to shipping trucks with tracking systems to cell towers, and now the full processor on a cell phone. They’ve been with us since the beginning of the mobile era and one has to wonder if the next few generations of mobile technology will involve satellites, so if Qualcomm will end up right back where they began: encoding bits of information theory into silicon.